Full length RTN3 regulates turnover of tubular endoplasmic reticulum via selective autophagy
نویسندگان
چکیده
The turnover of endoplasmic reticulum (ER) ensures the correct biological activity of its distinct domains. In mammalian cells, the ER is degraded via a selective autophagy pathway (ER-phagy), mediated by two specific receptors: FAM134B, responsible for the turnover of ER sheets and SEC62 that regulates ER recovery following stress. Here, we identified reticulon 3 (RTN3) as a specific receptor for the degradation of ER tubules. Oligomerization of the long isoform of RTN3 is sufficient to trigger fragmentation of ER tubules. The long N-terminal region of RTN3 contains several newly identified LC3-interacting regions (LIR). Binding to LC3s/GABARAPs is essential for the fragmentation of ER tubules and their delivery to lysosomes. RTN3-mediated ER-phagy requires conventional autophagy components, but is independent of FAM134B. None of the other reticulon family members have the ability to induce fragmentation of ER tubules during starvation. Therefore, we assign a unique function to RTN3 during autophagy.
منابع مشابه
Endoplasmic reticulum stress regulates inflammation in adipocyte of obese rats via toll-like receptors 4 signaling
Objective(s): To explore whether endoplasmic reticulum (ER) stress regulates inflammation in adipose tissue of obese rats via TLR4 signaling. Materials and Methods: Sprague Dawley rats were randomly divided into four groups, and body weight, food intake, and free fatty acids (FFA) were measured. Real-time PCR and Western blot were used to determine mRNA or protein expression of TLR4, TRAF6, IKK...
متن کاملER homeostasis and autophagy
The endoplasmic reticulum (ER) is a key site for lipid biosynthesis and folding of nascent transmembrane and secretory proteins. These processes are maintained by careful homeostatic control of the environment within the ER lumen. Signalling sensors within the ER detect perturbations within the lumen (ER stress) and employ downstream signalling cascades that engage effector mechanisms to restor...
متن کاملImpact of RTN3 deficiency on expression of BACE1 and amyloid deposition.
Reticulon 3 (RTN3) has previously been shown to interact with BACE1 and negatively regulate BACE1 activity. To what extent RTN3 deficiency affects BACE1 activity is an intriguing question. In this study, we aimed to address this by generating RTN3-null mice. Mice with complete deficiency of RTN3 grow normally and have no obviously discernible phenotypes. Morphological analyses of RTN3-null mice...
متن کاملA morphometric study of cellular autophagy including diurnal variations in kidney tubules of normal rats
Cellular autophagy in convoluted tubules of kidney was studied in 24 rats, killed in pairs at constant time intervals during one diurnal cycle, by (a) morphometric evaluation of tubular cells by the point-counting method in randomly sampled micrographs, and (b) selective search for autophagic vacuoles (AV) directly on the electron microscopy screen. The total area of tubular cells recorded in t...
متن کاملReduced amyloid deposition in mice overexpressing RTN3 is adversely affected by preformed dystrophic neurites.
Reticulon 3 (RTN3) was initially identified as a negative modulator of BACE1, an enzyme that cleaves amyloid precursor protein (APP) to release beta-amyloid peptide. Interestingly, RTN3 can also form aggregates after accumulation, and increased RTN3 aggregation correlates with the formation of RTN3 immunoreactive dystrophic neurites (RIDNs) in brains of Alzheimer's cases. Transgenic mice expres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2017